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THE BURR XII EXPONENTIATED WEIBULL MODEL

M. S. HAMED

Abstract. A new extension of the exponentiated Weibull model with variable
shapes of hazard rates is introduced and studied. Some of its mathematical
properties are derived. Two applications are allocated to show the importance
and �exibility of the new model.

1. Introduction and motivation

A random variable (RV) Z is said to have the Exponentiated Weibull [EW (a; b)]
distribution if its probability density function (PDF) and cumulative distribution
function (CDF) are given by

ha;b(z) = abz
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respectively, for z > 0, � > 0 and � > 0, when � = 1 we get the the one parameter
W model. In this work, we will introduce and study a new version of the EW model
called the Burr XII EW model based on the BXII-G family intridused by (see [5])
and give an overall description of its properties along with two real data applica-
tions. The new EW model is motivated by its important �exibility in applications.
By means of two applications, it noticed that the BXIIEW model provides better
�ts than other W models. Following [5], the CDF of the new can be written as
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and its corresponding PDF is given by
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(2)
the corresponding hazard rate function (HRF) can be expressed as
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We can provide an easy transformation of an uniform RV to generate the BXIIEW
RV, in fact, if U is a uniform RV in (0; 1) and

W =
h
�1 + (1� U)��

�1i��1
;

then

X =

(
� ln

"
1�

�
W

1 +W

�a�1#)b�1
;

has CDF (1). A physical interpretation of the BXIIEW model can be given as
follows. Let Y be a lifetime RV having EW distribution. The odds ratio that an
individual (or component) following the lifetime Y will die (failure) at time x will
be

� (X) =

�
1� e�x

b
�a
=

�
1�

�
1� e�x

b
�a�

:

The function � (X) is always monotonic and non-decreasing. If we are interested in
modeling the randomness of the odds by the RV T having the BXIIEW as in (5),
we can write

Pr
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��a
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9=; = 1�
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b
��a
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��

= F (x) :

which is identical to (1). So, if X has the BXIIEW model, then T = � (X) has the
BXIIEW CDFgiven by (1).
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Figure 1: Plots of the BXIIEW PDF .
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Figure 2: Plots of the BXIIEW HRF.

18 



THE BURR XII EXPONENTIATED WEIBULL MODEL 5

From Figure 1 we conclude that the PDF of the BXIIEW distribution exhibits
all important shapes like symmetric, left skewed, right skewed and bimodal, from
Figure 2 we conclude that the HRF of the BXIIEW distribution exhibits bath-
tub, constant, increasing, decreasing, unimodal then constant and unimodal then
bathtub hazard rates.

This paper is organized as follows. In Section 2, we derive some of mathematical
properties for the BXIIEWmodel. Maximum likelihood estimation for the BXIIEW
parameters is addressed in Section 3. In Section 4, potentiality of the proposed
model is illustrated by means of two real data sets. Finally, Section 5 ends with
some conclusions.

2. Properties

2.1. Linear representation. First, we consider two power series
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1X
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�
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and
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Applying (3) for A in (1) gives
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Second, using the binomial expansion, the last equation can be expressed as
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Third, applying (4) for B in the last equation gives

F (x) = 1�
1X

j;k=0

kX
i=0

qi;j;kH(k�i)�+j;b(x); (5)

where

Ha;b(x) = [Ha;b(x)]

= Ha;b(x) =

�
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b
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is the cdf of the EW model with power parameter a where a > 0 and
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Upon di¤erentiating (5), we obtain

f(x) =
1X

j;k=0

j+k�1

kX
i=0

ci;j;k h(k�i)�+j;b (x) ; (6)

where ha;b(x) denotes the EW density with power parameter a > 0 and ci;j;k =
�qi;j;k.

2.2. Moments and generating function. The rth ordinary moment of X say
�0r = E(X

r), is determined from (6) as
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and Z 1

0
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is the complete gamma function. The rth incomplete moment of X, say Ir(t), can
be determined from (6) as

Ir(t)j(j+k�1)(r>�b) =
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�
1 + rb�1; t�b

� 1X
j;k;h=0

kX
i=0

ci;j;k;h : (7)

where  (�; q) is the incomplete gamma function.
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and 1F1 [�; �; �] is a con�uent hypergeometric function. The moment generating
function (MGF) M(t) = E(et X) of X follows from (6) as

M(t)j(j+k�1)(r>�b) = �
�
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� 1X
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kX
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2.3. Probability weighted moments (PWMs). The (s; r)th PWM of X de-
noted by �s;r is formally de�ned by

�s;r = E fXs F (X)rg =
Z 1

�1
xs F (x)r f(x) dx:

Using (1), we have
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:

Expanding z� in Taylor series, we can write
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1X
h=0

(�)h
h!
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:

First, applying the Taylor series in z� for F (x)r; we obtain
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Second, using (2) and the last equation, we have
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Applying (3) for C in the last equation, we obtain
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Third, using the binomial expansion for D, the last equation be rewritten as
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Applying (4) for E in the last equation gives
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c(w) = �(c+ w)=�(c)
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denotes the rising factorial. Finally, the (s; r)th PWM of X can be determined from
the EW moments as

�s;rj
(j�k)
(s>�b) = �

�
1 + sb�1

� 1X
k;m;h=0

kX
j=0

�
(a[�(k�j+1)+m];s)
j;k;m;h :
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�
(a[�(k�j+1)+m];s)
j;k;m;h = b

(r)
j;k;m c

(a[�(k�j+1)+m];s)
h

2.4. Residual life and reversed residual life functions. The nth moment of
the residual life, say

�n(t) j(n=1;2;:::)(X>t) = E (X � t)n :

The nth moment of the residual life of X is given by

�n(t) j(n=1;2;:::)(X>t) = [1� F (t)]�1
Z 1

t

(x� t)ndF (x):

Therefore
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1X

j;k;h=0

kX
i=0

c
(�)
i;j;k c

((k�i)�+j;n)
h �
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�
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c
(�)
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� (�; q) j(x>0) =
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q
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and
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The nth moment of the reversed residual life, say

!n(t) j(n=1;2;:::)(X�t;t>0)= E(t�X)
n ;

We obtain

!n(t) j(n=1;2;:::)(X�t;t>0)= [F (t)]
�1
Z t

0

(t� x)ndF (x):

Then, the nth moment of the reversed residual life of X becomes

!n(t) j(n=1;2;:::);(j+k�1)(X�t;t>0);(n>�b) = [F (t)]
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2.5. Moments of order statistics. Let X1; � � � ; Xn be a random sample (RS)
from the BXIIEW distributionl and let X1:n; � � � ; Xn:n be the corresponding order
statistics. The PDF of the ith order statistic, say Xi:n, is given by

fi:n (x) =
f (x)

B (i; n� i+ 1)

n�iX
r=0

(�1)r
�
n� i
r

�
F r+i�1 (x) ;

where B(�; �) is the beta function. From (9) we can write

f(x)F (x)r+i�1 =
1X

k;m=0

kX
j=0

b
(r+i�1)
j;k;m ha[�(k�j+1)+m];b (x) ;

where b(r+i�1)j;k;m is de�ned there. So, the PDF ofXi:n follows using the last expression
as

fi:n (x) =
1

B (i; n� i+ 1)

1X
k;m=0

n�iX
r=0

kX
j=0

(�1)r
�
n� i
r

�
b
(r+i�1)
j;k;m ha[�(k�j+1)+m];b (x) :

(10)
Based on (10), the moments of Xi:n can be expressed as. Then we have

E (Xq
i:n) j

(j�k)
(q>�b) =

�
�
1 + q

b

�
B (i; n� i+ 1)

1X
k;m;h=0

n�iX
r=0

kX
j=0

�
(a[�(k�j+1)+m];q)
j;k;m;r;h ;

where

�
(a[�(k�j+1)+m];q)
j;k;m;r;h = (�1)r

�
n� i
r

�
b
(r+i�1)
j;k;m c

(a[�(k�j+1)+m];q)
h

2.6. Quantile spread (QS) ordering. The QS of a probability model describes
how the probability mass is placed symmetrically about its median (Medi(X)) and
hence can be used to formalize concepts like tailweight traditionally associated with
kurtosis (Kur(X)) and peakedness (Peak(X)). The QS of a RVX �BXIIEW(�; �; a; b)
with cdf in (1) is given by

QSX (#) =
�
F�1(#)

�
�
�
F�1(1� #)

�
8 # 2 (0:5; 1)

and this implies
QSX (#) =

�
S�1(1� #)

�
�
�
S�1(#)

�
;

where S�1(1� #) = F�1(#) and 1�F = S is the survival function. It allows us to
separate concepts of Kur(X) and Peak(X) for asymmetric models. Let X1 and X2
be two random variables follow LiW model with quantile spreads QSX1

and QSX2
,

respectively. Then X1 is called smaller than X2 in quantile spread order, denoted
as X1 �(QS) X2 , if QSX1

(#) � QSX2
(#) ; 8 # 2 (0:5; 1) : The following properties

of the quantile spread order can be determined
� The order �(QS) is location-free, i.e.,

X1 �(QS) X2 if (X1 + C) �(QS) X2 for any real C:
� The order �(QS) is dilative which means

X1 �(QS) �X1 whenever � � 1 and X2 �(QS) �X2 ; 8 � � 1:
� Assume FX1

and FX2
are symmetric, then

X1 �(QS) X2 if, and only if F�1X1
(#) � F�1X2

(#) ; 8 # 2 (0:5; 1) :
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� The order �(QS)implies ordering of the mean absolute deviation around the
median, MAD(Xi)j(i=1;2),

E [j �Medi(X1) +X1j] =MAD(X1)

and
E [j �Medi(X2) +X2j] =MAD(X2);

i.e.,
X1 �(QS) X2 ) MAD(X1) �(QS) MAD(X2):

� Finally
X1 �(QS) X2 if, and only if �X1 �(QS) �X2:

3. Maximum Likelihood Estimation (MLE)

The MLEs enjoy some desirable statistical properties which can be used for con-
�dence intervals (CI) and test statistics. The normal approximations for those
estimators in large sample theory is easily to be handled analytically and numer-
ically as well. We determine the MLEs of the parameters of the BXIIEW model
only from complete samples. Other further works may be addressed using di¤er-
ent methods for estimating the BXIIEW parameters such as least squares, mo-
ments, weighted least squares, Anderson-Darling, Jackknife, bootstrap, Cramér-
von-Mises, Bayesian analysis, among others, and compare the estimators based on
these methods. Let x1; � � � ; xn be a RS from the BXIIEW distribution with pa-
rameters �; �; a and b. Let ' =(�; �; a; b)T be the parameter vector. Then, the
log-likelihood function for �, say ` = ` (�), is given by

` = n log�+ n log � + n log a+ n log b+ (b� 1)
nX
i=0

log xi + (a�� 1)
nX
i=0

log (1� � i)

� (�+ 1)
nX
i=0

log [1� (1� � i)a]� (1 + �)
nX
i=0

log

�
1 +

�
(1� � i)a

1� (1� � i)a
���

; (11)

where � i = e�x
b

i . Equation (11) can be maximized either directly by using ready
software packages such as the SAS (PROC NLMIXED), R (optim function) or Ox pro-
gram (sub-routine MaxBFGS) or by solving the nonlinear likelihood equations ob-
tained by di¤erentiating (11). The score vector components, say L (�) = @`

@� =

(L�;L� ;La;Lb)
T , are available from the corresponding author. Via setting the

nonlinear system L�;L� ;La;Lb = 0 and solving them simultaneously yields the
MLE b� = (b�; b�;ba;bb)T of � = (�; �; a; b)T . If those equations cannot be solved
analytically, the Newton-Raphson type algorithms can be used to solve them nu-
merically. For the CIs estimation of the unknown model parameters, we should get
the observed information matrix J (�) which is the output after using the above
maximization procedures. When n ! 1 (under standard regularity conditions),
the distribution of b� can be approximated by a multivariate normal N4(0; J(b�)�1)
distribution to construct approximate CIs for the parameters. Here, J(b�) is the to-
tal observed information matrix evaluated at b�. The re-sampling bootstrap method
may be adopted for correcting the biases of the MLEs of the model parameters.
The CIs estimates may also be obtained using the bootstrap percentile method.
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4. Real data applications

In this section, we will provide two real data applications to illustrate importance
of the BXIIEW model. The MLEs of the parameters for all models are calculated
and two goodness-of-�t statistics are used to compare the new model with other
models. We shall compare the �ts of the BXIIEW distribution with other competi-
tive models such as the Weibull (W) (see [14]), the exponetiated Weibull (EW) (see
[8] and [9]), the transmuted Weibull (TW) (see [2]), the beta Weibull (BW) (see
[6]), the Burr X Weibull (BXW) (see [12]), the Kumaraswamy Weibull (KwW) (see
[4], OLiW (see [13] and [1]), WGW (see [15]) and the McDonald Weibull (McW)
(see [3]) distributions given by:

� WG-W :

f(x; ; �; b) = �bxb�1
h
1� e��x

b
i�1

e�(�+2)x
b

e
�
�
1�e��x

b

e��xb

�
;

� W :

f(x) = bxb�1e�x
b

;

� EW :

f(x) = abxb�1e�x
b
�
1� e�x

b
�a�1

;

� OLiW

f(x) = �2 (1 + �)
�1
bxb�1 e2x

b

e
�� 1�e�x

b

e�x
b
:

� BXW

f(x) = 2�bxb�1
�
1� e�x

b
��
1� e�

h
ex

b
�1
i2���1

e
2x

�
�
�
ex

b
�1
�2
;

� BW :

f(x) = bxb�1e�x
b
�
1� e�x

b
���1

=B(�; );

� KwW :

f(x) = �bxb�1
�
1� e�x

b
���1 h

1�
�
1� e�x

b
��i

�1e�x
b

;

� TW :

f(x) = bxb�1
h
1 + �� 2�

�
1� e�x

b
�i
e��x

b

;

� McW :

f(x) = bxb�1e�ax
b
�
1� e�x

b
���1 h

1�
�
1� e�x

b
�i

a�1=B(�; a):

The1st data set consists of the failure times for a particular windshield
model including 88 observations that are classi�ed as failed times of wind-
shields. These data were previously studied by [10]. Figure 3 gives the
TTT plots for the 1stdata set, from Figure 3 we onclude that the empirical
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HRFs of the data can be increasing.

Figure 3: TTT plot for dta set I.

The 2nd real data set represents the survival times of 121 patients with
breast cancer obtained from a large hospital in a period from 1929 to 1938
([7]). The data was examined by [11]. Figure 4 gives the TTT plots for the
1stdata set, from Figure 4 we onclude that the empirical HRFs of the data
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can be unimodal.

Figure 4: TTT plot for dta set II.

In order to compare the �tted models, we will consider some goodness-of-�t
measures including the Akaike information criterion (AIC) and Bayesian
information criterion (BIC) as

AIC = 2p� 2^̀ and BIC = p log (n)� 2^̀;

where p is the number of parameters, n is the sample size and ^̀ is the log-
likelihood function evaluated at the MLEs. The smaller are values of these
statistics, the better are the �ts.Tables 1 and 2 list the MLEs of the model
parameters and the numerical values of the model selection statistics AIC
andBIC and K-S. We note from the �gures in Table 1 that the BXIIEW
model has the lowest values of the AIC and BIC (for the �rst data set) as
compared to other models. The �tted PDF, HRF and P-P plot of the �rst
data of the BXIIEW model is displayed in Figure 5. Similarly, it is also
evident from Table 2 that the BXIIEW gives the lowest values the AIC,
BIC (for the second data set) as compared to other models. The �tted
PDF, HRF and P-P plot of the second data of the BXIIEW distribution is
displayed in Figure 6.
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Table 1: The MLEs and the goodness-of-�t statistics for the �rst data set.
Distribution Parameter Estimates AIC BIC
W(b) 2.562 331.9 334.4
BXW(�; b) 36.3, 0.123 314.5 319.4
EW(a; b) 3.595,1.316 286.7 291.6
BW(b; �; ) 1464.1, 3.52, 2014.8 282.7 290.1
OLiW(�; b) 4.39, 0.63 280.5 285.4
KwW(b; �; ) 80.66, 2.41, 3351.1 268.9 276.2
TW(b; �) 1.749,�0.996 297.6 302.5
McW(; a; �; b) 27.80, 8.68, 0.256, 3.73 269.2 279.0
BXIIEW(�; �; a; b) 0.76, 0.11, 0.67, 2.33 263.6 273.3

Figure 5: Estimated PDF, P-P plot and estimated HRF for the �rst data set.
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Table 2: The MLEs and the goodness-of-�t statistics for the second data set.
Distribution Parameter Estimates AIC BIC
W(b) 46.35 1172.2 1175.1
EW(a; b) 36.03, 1.515 1166.1 1173.7
BW(b; �; ) 12635.4, 1.492, 406.1 1165.6 1173.9
McW(; a; �; b) 9.05, 2.28, 0.508, 169.4 1166.0 1177.2
WGW(�; ; b) 0.126, 0.957,10.06 1165.5 1172.8
BXIIEW(�; �; a; b) 0.23, 0.73, 0.08, 0.81 1025.2 1036.6

Figure 6: Estimated PDF, P-P plot and estimated HRF for the second data set.

5. Conclusions

In this work, a new extension of the exponentiated Weibull model with vari-
able shapes of hazard rates is introduced and studied. Some of its mathematical
properties are derived. Two applications are allocated to show the importance and
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�exibility of the new model. . We prove empirically the importance and �exibility
of the new model in modeling two types of lifetime data, the new model has the
lowest values of the AIC and BIC (for the 1st data set). Similarly, the new model
gives the lowest values the AIC, BIC (for the 2nd data set) as compared to other
models. The new model is much better than other competitive models.
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